Sino의 라미네이션 스택으로 프로젝트에 힘을 실어주세요!
프로젝트 속도를 높이기 위해 라미네이션 스택에 다음과 같은 세부 정보를 레이블로 지정할 수 있습니다. 허용 오차, 재료, 표면 마감, 산화 단열재가 필요한지 여부, 수량등 다양한 기능을 제공합니다.

단 한 가지만 기억한다면 이것을 명심하십시오: 스택 높이 공차와 자석-에어갭 정렬을 별개의 조절 장치가 아닌 결합된 무작위 시스템으로 다루십시오. 이 둘을 함께 시뮬레이션하면, 그 추가 0.02mm 공차가 "정말로 필요한가"에 대한 논쟁은 저절로 해결되는 경향이 있습니다.
대부분의 논문은 에어갭 길이 또는 자석 공차를 분리하여 다루고 나머지 모든 요소는 공칭값에 고정시킨다. 이는 이론에는 유용하지만 제조와 논쟁할 때는 덜 유용하다.
공극이 0.1mm만 변해도 평균 토크는 약 1%, 토크 리플은 일부 기계에서 50% 이상 변동할 수 있다는 사실은 이미 알려져 있습니다. 동시에 축방향 스택 높이 변화는 엔드 효과, 축방향 누설, 강성, 그리고 구조물이 로터를 편심 위치로 밀어내는 강도에 영향을 미칩니다. 이 두 요소가 도면에서 독립적으로 존재하는 경우는 없으며, 부품, 고정 장치, 공급업체를 공유합니다.
따라서 변형 모델이 스택 높이(stack height)와 에어갭 이심률(airgap eccentricity)을 독립적으로 유지한다면, 이는 3차원 구조가 자기 회로에 영향을 미치지 않는다는 사실—당신이 알고 있듯이 틀린 가정—을 암묵적으로 전제하고 있는 셈이다.
여러 가지 업무가 이미 책상 위에 쌓여 있습니다.
일련의 연구에서는 에어갭을 주요 기하학적 파라미터로 간주합니다. 이 연구들은 갭 길이의 미세한 변화가 토크, 토크 리플, 인덕턴스 및 자속 약화 능력에 뚜렷한 변화를 초래함을 보여주며, 좁은 갭과 기계적 위험 사이의 일반적인 상충관계에 대해 경고합니다. 다른 연구 흐름은 축방향 자속 기계를 대상으로 제조 공차에 대한 통계적 분석을 수행하며 만 가지 변형을 실행합니다. 결합된 자석 및 위치 공차는 코깅 및 리플 토크를 명목상 설계가 제시하는 수치보다 수 배 더 높게 만듭니다.
순수 기하학적 측면에서, 영구자석 발전기의 공차 누적 분석은 단순한 최악의 경우 시나리오에서도 0.8~1.2mm의 공기간극 요구사항을 실제 약 0.81~1.18mm로 압축할 수 있음을 보여줍니다. 또한 몇 가지 핵심 특징에 공차를 재할당함으로써 전자기적 측면을 재설계하지 않고도 부담을 줄일 수 있음을 입증합니다. 실제 기계에 대한 측정 결과는 CAD가 동시에 예측하고 우려했던 사항을 확인시켜 주었습니다: 에어갭 길이, 자석 잔류자속, 에어갭 자속 밀도는 예상대로 상관관계를 보이지만, 명목값은 종종 몇 퍼센트 정도 낙관적으로 설정된 경우가 많습니다.
마지막으로, 플럭스 스위칭 기계에 대한 견고한 설계 연구들은 이미 데이터로 입증하듯, 공기 갭을 약간 늘리면 불균형 방사형 힘을 크게 줄이면서도 토크는 약 10% 정도만 감소시킬 수 있으며, 제조 공차(公差)는 성능 분포에 직접 반영되는 정규 분포 변수로 취급해야 한다고 주장한다. 0.25mm 갭과 ±0.03~0.11mm 수준의 공차 범위로 작동하는 우주 등급 자기 기어는 이 이야기를 완성합니다: 좁은 에어갭 구현은 가능하지만, 이는 적층 구조, 구조적 변형, 열팽창을 하나의 통합 모델로 해결했을 때만 가능합니다.
유용한 작업이다. 그러나 대부분은 축적 오차를 수정하거나 단일 안전 계수로 압축하는 데 그친다.
시뮬레이션이 현실과 일치하려면, "스택 높이"와 "에어갭 정렬"이 가공 및 조립 과정과 일치하도록 그 의미를 정의해야 합니다.
스택 높이는 단순히 적층 길이가 아닙니다. 이는 갭으로 자속을 밀어넣는 모든 요소의 순 축 방향 적층 높이입니다: 라미네이션, 단면, 자석 지지대, 시밍, 심지어 두께가 충분히 두꺼워 문제가 될 경우 접착층까지도 영향을 미칩니다. 로터 측에서는 스택 높이 변동이 자석이 고정자 이빨에 대해 축 방향으로 실제로 위치하는 위치를 변경시킬 수 있습니다. 고정자 측에서는 활성 강판이 자석 스택과 얼마나 잘 겹치는지를 결정합니다.
에어갭 정렬에는 최소 세 가지 요소가 존재한다. 평균 방사형 간극이 있으며, 로터의 중심 이탈 정도를 나타내는 이심률이 있다. 또한 고정자와 회전자가 축 방향으로 비스듬히 배치되는 스큐가 있는데, 이는 두 스택이 동일하지 않거나 직각을 이루지 않을 때 발생한다. 짧은 기계에서는 이 마지막 요소가 2D 도면에서 예상되는 것보다 훨씬 빠르게 문제를 일으키기 시작한다.
커플링은 제약 조건 속에서 존재한다. 하나의 가공 고정구는 적층 스택 높이와 베어링 숄더 위치를 동시에 설정할 수 있다. 스러스트 엔드플레이를 고정하는 심 선택은 고정자 창에서 자석의 위치를 변화시킨다. 이러한 연관성을 반영하지 않으면, 당신이 그리는 몬테카를로 분포는 자연이 제공하는 것보다 더 깔끔해질 것이다.

이 시점에서 이미 도면과 ISO 또는 ASME 공차 등급을 보유하고 있습니다. 이는 확률 변수를 구축하기에 충분합니다.
부품 수준의 치수 및 형상 공차에서 시작하여 이를 소수의 효과적인 변수로 매핑합니다: 로터 스택 높이, 스테이터 스택 높이, 평균 에어갭, 이심률, 그리고 주요 경사각 또는 스큐각 등입니다. 최악의 경우나 근사합제곱근에 가까운 방법을 사용하든, 전통적인 스택업 방식은 대수적 관계를 제공합니다. 관계 제약 조건은 기준 체계에서 직접 도출됩니다; 하나의 기준 이동이 여러 표면을 함께 이동시킬 수 있습니다.
그런 다음 분포를 할당합니다. 대량 생산 기계의 경우 정규 분포나 절단 정규 분포가 측정 데이터와 일치하는 경우가 많습니다. 일부 소량 생산 부품의 경우 직사각형 분포나 "사양 범위 내이지만 편향된" 분포에 더 가깝게 유지할 수 있습니다. 중요한 것은 정확한 형태가 아니라 상관관계가 있는 변수들이 상관관계를 유지하도록 하는 것입니다. 한 연삭 공정이 에어갭과 로터 스택 높이를 동시에 정의한다면, 공차 표에 무엇이 기재되어 있든 그 편차는 독립적이지 않습니다.
자기 모델의 경우 일반적인 패턴은 여전히 적용되지만, 이를 다르게 활용합니다.
평면 중심부에서 평균 에어갭과 이심률에 대한 신속한 스윕을 위해 2D 모델을 유지하되, 실제 스택 높이 및 끝단 효과를 포함한 소수의 3D 시뮬레이션 결과로 보정합니다. 3D 시뮬레이션은 로터와 스테이터 스택 불일치 및 축방향 오프셋에 대한 함수 형태의 보정 계수를 제공합니다. 이러한 보정 계수가 확보되면 변동성 연구는 대부분 2D 또는 축소된 자기 등가 회로에서 수행될 수 있습니다.
핵심은 공차 결정과 직접 연결되는 소수의 출력값을 정의하는 데 있다. 평균 토크, 토크 리플, 역기전력, 중요 치아의 국부적 피크 자속 밀도, 그리고 불균형 반경력 측정이 일반적으로 충분하다. 소음과 진동은 대개 이러한 요소들로부터 파생된다.
수만 대의 가상 머신에 대해 모든 사소한 파형 세부 사항을 해결할 필요는 없습니다. 성능 변화가 허용 오차 범위 내에서 실제적인 것이지 수치적 잡음이 아니라는 것을 확인할 수 있을 정도의 정확도만 있으면 됩니다.
기계적 측면에서 축방향 스택 높이는 강성과 하중이 베어링 및 하우징에 분배되는 방식을 결정합니다. 스택 높이의 미세한 변화는 접촉하는 표면이나 심의 압축 방식을 변경할 수 있으며, 이는 다시 하중 하에서의 편심을 변화시킵니다.
최소한이지만 유용한 모델은 다음을 결합한다:
회전자-고정자-베어링 시스템의 정적 구조 표현으로, 필요한 부분에 접촉 또는 예압을 포함하여 각 공차 실현 및 각 작동 하중 사례에 대한 이심률과 기울기를 계산할 수 있습니다.
동일한 작동점에서 온도 분포를 제공하는 열 모델로, 우주용 액추에이터에서 관찰된 바와 같이 열팽창으로 인해 평균 에어갭이 수명 주기 동안 몇 퍼센트 정도 쉽게 변동할 수 있기 때문입니다.
다시 말해, 모든 몬테카를로 시뮬레이션 샘플에 대해 완전한 CFD 또는 상세한 접촉 모델이 필요하지 않습니다. 응답 표면을 사전 계산하십시오: 이심률과 경사가 유효 적재 높이와 몇 가지 적재 변수에 어떻게 의존하는지 파악합니다. 그런 다음 이를 자기 모델에 입력하십시오.
아래 표는 특정 기계에서 추출한 것이 아니라 예시적이지만, 엔지니어들이 실제로 논쟁하는 상호작용 유형을 보여줍니다. 0.8mm의 방사형 에어갭, 80mm의 고정자 및 회전자 스택 높이, 그리고 어느 정도 토크 리플을 가진 명목상 기계를 가정합니다.
| 사례 | 로터 스택 ΔL (mm) | 고정자 스택 ΔL (mm) | 평균 에어갭 g (mm) | 이심률 e (mm) | Δ토크 (%) | 토크 리플 (%) | 댓글 |
|---|---|---|---|---|---|---|---|
| 명목상 | 0.00 | 0.00 | 0.80 | 0.00 | 0 | 0 | 유한 요소 분석(FEA) 및 시험에 사용된 설계 포인트 |
| A | +0.20 | 0.00 | 0.80 | 0.02 | −0.5 | +15 | 더 긴 로터 스택, 약간 더 큰 반경 방향 하중, 토크 하에서 작은 편심 |
| B | +0.20 | −0.10 | 0.76 | 0.04 | +1.0 | +40 | 스택 불일치로 한쪽 면의 자석이 더 가까워짐; 해당 부위의 갭 감소, 국부적 자기장 B 증가, 강한 리플 증가 |
| C | −0.20 | 0.00 | 0.84 | 0.01 | −3.0 | −10 | 로터 스택 길이 감소, 간극 소폭 확대 및 강성 저하, 토크 손실은 적지만 리플 성능 향상 |
| D | +0.10 | +0.10 | 0.82 | 0.00 | −2.0 | −5 | 양쪽 스택 모두 길며; 어셈블리 심으로 인해 평균 간격이 증가하고, 리플이 약간 개선됨 |
| E | +0.20 | −0.10 | 0.72 | 0.05 | +1.5 | +80 | B와 동일한 기하학적 구조이지만 더 높은 부하 하에서; 이심률이 증가하며 역기전력 및 소음 위험이 발생합니다. |
설계에 대해 수백 개의 실제 변형을 실행하면 패턴은 대개 유사하게 나타납니다. 스택 불일치와 에어갭 정렬이 복합적으로 작용하는 B와 E와 같은 사례가 수율 한계를 정의합니다. 이는 기계가 서류상으로는 전기적 사양을 충족하지만 NVH 또는 기계적 간극 검사에서 실패하는 지점입니다.
해결 방안의 윤곽도 확인할 수 있습니다. 명목상 공기간극을 약간 더 크게 설정하고 스택 공차를 재조정하여 로터와 고정자 길이가 함께 변동하도록 하면, 최악의 조합을 작동 영역에서 멀리 밀어낼 수 있습니다. 이는 FSPM 기계에서 보고된 경향과 일치하는데, 더 큰 공기간극이 적당한 토크 손실 비용으로 불균형력을 감소시켰습니다.

기본 개념은 간단하다: 모든 핵심 허용오차를 변수로 전환하고, 이를 샘플링한 후 결합된 전자기 및 구조 모델을 실행하는 것이다. 문제는 수주간의 계산 시간을 소모하지 않으면서도 충분한 통찰력을 얻는 데 있다.
실무에서 통용되는 일반적인 패턴은 다음과 같으나, 각 팀마다 적용 방식은 다릅니다. 효과적인 변수들(로터 스택, 스테이터 스택, 평균 에어갭, 이심률, 그리고 자석 잔류자속 같은 한두 가지 추가 변수)에 대해 설계된 실험을 수행합니다. 수십 개의 신중하게 선택된 데이터 포인트로도 충분한 경우가 많습니다. 각 데이터 포인트에 대해 결합 모델을 실행하고 출력을 캡처한 후, 다항식, 가우시안 프로세스 또는 이와 유사한 가벼운 모델로 서러게이트를 피팅합니다.
대리 모델이 기본 검증을 통과하면 몬테카를로 시뮬레이션 내에서 이를 활용합니다. 이 단계에서는 수백만 개의 샘플을 저렴하게 생성할 수 있습니다. 이를 통해 성능 분포, "양호한 평균 간극 조건 하에서의 토크 리플 대 로터 스택"과 같은 조건부 플롯을 추출할 수 있으며, 가장 유용하게는 추상적인 치수뿐만 아니라 특정 공차 요인에 대한 성능 민감도를 분석할 수 있습니다.
강건 설계 연구는 이미 이러한 방식으로 공차를 처리할 경우, 최상의 성능이 소폭 감소하는 것을 감수하면서도 고장 발생 확률을 현저히 낮출 수 있음을 보여줍니다. 귀사의 대리 모델은 귀사 설계에 있어 "현저히"와 "소폭"이 정확히 무엇을 의미하는지 알려줄 것입니다.
변이 시뮬레이션은 인쇄물과 공정 시트에 반영될 때만 그 노력을 기울일 가치가 있다.
먼저, 기여 요소를 순위화합니다. 단순히 "공극이 가장 중요하다"는 이미 알려진 사실이 아니라, "고정자 스택에 의한 평균 공극 변동보다 회전자 스택과 베어링 시트 위치에 의한 이심률이 더 해롭다"는 점을 파악해야 합니다. 이는 발전기 스택업 연구에서 입증된 바와 같이, 한 차원은 강화하고 다른 차원은 완화할 수 있는 합리적 근거를 제공합니다. 즉, 사소한 부품에서 회전자 축으로 엄격한 공차를 재배분하는 방식이죠.
둘째, 공칭값을 조정합니다. 평균 공극 분포가 어셈블리 과정에서 부품들이 서로 가까워지는 경향으로 인해 낮은 쪽으로 치우친 경우(평균 공극이 공칭값보다 약 5% 작게 측정된 사례에서 확인됨), 완벽한 중심 맞추기를 추구하기보다 공칭값을 상향 조정할 수 있습니다. 변동 모델은 기계적 한계치에 근접한 상태에서 확보할 수 있는 여유량을 알려줍니다.
셋째, 공정 아이디어를 검증합니다. 매칭 그라인딩 공정, 대체 기준면 설계, 또는 분할 고정자 조립체는 모두 명백한 기하학적 결과를 초래합니다. 이를 변동 모델 내 수정된 상관 구조로 전환하여 실제 성능 편차를 줄이는 요소를 확인할 수 있습니다. 이는 우주용 액추에이터 연구에서 매칭 그라인딩 베어링 시트가 예측된 에어갭 허용 오차 범위를 ±0.09mm에서 ±0.027mm 수준으로 축소한 사례와 정확히 일치합니다.
이 모든 작업이 순수한 시뮬레이션 기술로 흘러가지 않고 현실에 발을 디디게 하는 몇 가지 습관들이 있다.
최소한 하나의 치수는 측정 데이터와 반드시 교차 검증하십시오. 초기 프로토타입 단계에서도 마찬가지입니다. 실제 에어갭 길이와 스택 높이를 빠르게 스캔하면 가정된 분포가 근접한지 여부를 알 수 있습니다.
출력 지표를 요구사항과 밀접하게 연계하십시오: 토크, 효율, NVH 대리변수, 여유 마진. 출력이 도면을 변경할 수 없다면, 변동 모델에 포함될 필요가 없습니다.
전자기 모델과 구조 모델을 동등한 파트너로 취급하라. 한쪽이 정상 상태를 유지하는 동안 다른 쪽이 변동하면, 표면상 신뢰할 수 있는 것처럼 보이지만 은밀히 편향된 결과를 얻게 될 것이다.
마지막으로, 논리를 지나치게 다듬고 싶은 유혹을 참으십시오. 제조 현장은 논문처럼 깔끔하게 진행되는 경우가 거의 없습니다. 변동성 시뮬레이션이 이론적으로 완벽할 필요는 없습니다. 단지 공장 현실에 충분히 근접해야 합니다. 즉, 스택 높이(stack height)와 에어갭 정렬(airgap alignment)을 하나의 결합된 설계 변수로 취급해야 한다고 알려줄 때, 회의실에 있는 모든 사람이 그래프에서 자신의 경험을 확인할 수 있을 정도로 현실과 일치해야 합니다.